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The Effects of a Finite Pulse Time in the Flash
Thermal Diffusivity Method
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After a brief review of the finite pulse time effects in flash thermal diffusivity
measurements, an analytical expression for an exponential shape pulse was
determined using the Green function method. The results were compared with
those obtained by Larson and Koyama. It was found that, using the Larson
and Koyama equation, when the dimensionless time w is equal to zero, the
dimensionless temperature rise ¥ cannot reach zero, and when o,, the time
characterizing the dimensionless pulse, approaches 1/n? (n=1, 2, 3,..), a large
error of @, will result. These contradictions have been resolved by the present
work. In other respects, both sets of results concurred. The results are compared
with the triangular pulse and are discussed.
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1. INTRODUCTION

The flash method for measuring thermal diffusivity was first proposed by
Parker et al. [1] 30 years ago. Since the seventies, it has gained in
popularity to such an extent that over 80% of the current thermal
diffusivity measurements utilize this technique. This growth can be
attributed to the basic simplicity of the method, the small sample size
required, the rapidity of the measurements, the high reliability and
accuracy, the ability to use the technique from cryogenic to very high
temperatures, and the extensive adaptability for measuring materials whose
diffusivities range from 107 to 107> m?.s~ ! A schematic diagram of one
such apparatus is shown in Fig. 1 [2]. Very simply, the method involves
subjecting the front surface of a small size sample to a short energy pulse
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Fig. 1. Schematic diagram of UMIST laser flash apparatus.

and measuring the resultant temperature rise of the rear surface. The
dimensionless temperature rise ¥ can be expressed by [1]

VL =142 Y (=1) exp(—r’w) (1)
where » "
V(L 1) = T(ﬁ’ d )

and L is the sample thickness, ¢ is time, and 7, is the maximum
temperature rise of the rear surface, as shown in Fig. 2. The diffusivity is
usually determined from the relation

_ 0.1388L°

Lip

o

(4)

where t,,, is the time from the initiation of the energy pulse to where the
temperature rise on the rear surface has reached half of its maximum value,
Ty Equation (2) is based upon the duration of the energy pulse being
short compared to ¢,,,. If this is not the case, then the details of the shape
and duration of the energy pulse become important and must be
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Fig. 2. Dimensionless plot of rear surface temperature
history.

considered in deriving an appropriate expression for thermal diffusivity a.
The shape of the energy pulse may vary depending on the energy source.
Usually, a Nd glass laser is used as the source of energy pulse, but flash
lamps [1], electron beams [3], and other types of lasers [4] have also
been used. The shape and duration of the energy pulse affect the rear
temperature response curve. This is known as the finite time pulse effect
and causes the rear temperature history to lag behind in the curve in Fig. 2
[5]. During the last 20 years, many authors have derived various
equations for different pulse shapes. Among them, Larson and Koyama [6]
derived an equation for the case of an exponential-shape input pulse using
contour integration; although a square wave is considered a closer
approximation to the shape of the puise from a Nd glass laser [5].
However, if an exponential pulse is assumed, some of the results obtained
from the equation of Larson and Koyama are not acceptable. The purpose
of the present paper was to derive an equation that can used to correct the
finite pulse time effect for such exponential pulse shape to yield improved
results.

2. ANALYSES

2.1. Equation of Larson and Koyama

For a pulse whose shape is described by ¢(¢), Larson and Koyama
[6] define

o) = —exp -£) (5)
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where 7, is the time from the initiation of the energy pulse till the maxi-
mum output of the energy pulse has been reached. Using the coordinate
system given in Fig. 3 for a pulse incident upon the front surface and no
heat losses from the sample, the dimensionless expression derived by
Larson and Koyama is

L (n¥w,)" exp(—ofo,) o [\ L
VL, t)=1— 2 sin(n*/a,) I:l +2 p+ (cop> ctg(n?/w,)" ]

+2§1(—1)"§’1“’_(+2”;3§ (6)

VL, t)=% (7)
0y =" ®)
01 )

where T, is the ambient temperature.

2.2. Revised Mathematical Derivation

It is more convenient to select the coordinate as shown in Fig. 4,
whence the initial and boundary conditions become
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Fig. 3. Coordinate selected by Larson and Koyama [6].
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It can be shown that Eq. (11) reduces to
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The Green function of Eq. (13) satisfies the following conditions:

Flx 1) = qut ]:xz(l—%>+at}exp(——t/tp) (14)

P

G F6_

o Yoxt

A

0x|x -0 (15)
8G

= =0

ax x=1L

G(x, t)|t=r+0=5(x—é)J
The solution of Eq. (15) is

G(x, 5 ¢, 1)= i (& T) exp [— @(t——r—)] cos =X

e o t (16)
&)= cos ™ (1=0,1,2:.)
n\ls L5 T Uy Ly Leyees
The solution of Eq. (13) can be written as
! L
wwn=[ [ flanGnnended )
T=0v¢(=0
—g02 & 1 nnx\ (¢ oL [52< r) }
=2y —cos|— 1——|— 17
thﬁLEOa,,cos(L)LOL:O 2\ )" >( )
nné —n’mla(t—1)
x exp(—1/t,) cos <T) exp I:———Lz——] dr dé )
Let
do
=— 18
T (18)

where z,, is the maximum temperature rise.
Therefore z(x, t) is given by

2 1) =2y 11— ”2’+3+1 e 42 Y (—1)" cos —
6 P n=1 L

20

e e 1 %) e~ @/
_ 19
><[(1 o,y (1—n2wp+n2w§> 1—n2wp]} (19)
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At the rear surface of the sample

x=0, y0,1)=0

then
v(0, 1) = y(0, 1)+ 2(0, ) = z(0, ¢)
Let
V0, 1) = ”(S’ ) (20)

m

The resulting equation can be written as

o o e d .,
V2(0,t)=1-<@+;—)—p+l>e “42 3 ()
2

e~ w 1 W e_w/wp
— 21
>(|:(1—nz(up)2 <l—n2wp+n2wg> 1—n2wp] (21)

3. COMPARISON BETWEEN EQ. (6) AND EQ. (21)

The present equation [Eq.(21)] and that of Larson and Koyama
[Eq. (6)] were computerized for various values of o, w,, and V. Selected
values of V| [from Eq. (6)] and V, [from Eq. (21)] are given in Table L

It is shown that, when @, approaches 1/n?* (n=1,2,3,4) and w=0,
the dimensionless temperature rise ¥, =0. However, at the same time, V,

Table I. The Quantities V; and ¥V, from Various Values of o,

w=0 w=0.5 w=15

w, v, v, v, v, v, V,
1.005 8.1x1073 0 1.6x107* 14x107* 0.063 0.063
04 53x1074 0 89x10"% 92x107¢ 0.21 021
0.252 14x1073 0 19%1073  21x10? 0.31 0.31
0.111 7.7x1073 0 65x107°  67x107? 0.45 045
0.063 27x1072 0 12x107%  12x10°2 0.50 0.50
0.05 47%x1072 0 15%10°2  15x10°2 0.51 0.51
0.041 78x102 0 17x107%  1.7x10°? 0.52 0.52
0.005 482 x 103 0 33x107%7  33x1072 0.55 0.55
0.0024 6.347 x 102 0 3.5x1072  35x107? 0.56 0.56
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Table II. Values of w,;, When w, Approaches 1/1% and

Vi=V,=1/2
B
W, By Eq. (6) By Eq. (21)
1.005 3.05 3.34
1.020 3.35 3.36
0.995 353 3.32
0.980 3.30 3.29

does not equal zero, but changes as w, varies. When w,, is far from 1/n’
the values of V', are in agreement with V,. If w,=1/n’, both ¥, and V, are
undefined.

If we let ¥/, =V, =3, the corresponding values of w,,,, obtained from
Egs. (6) and (21), may be deduced for various values of 1/n% These are
computed for n=1, 2, 4 and listed in Tables II, III and IV.

From Tables I-1V, it is obvious that, when w, approaches 1/n? there
are significant errors in values from Eq. (6), for example, if w, = 1.005, then
wy, =3.05; when @,=0995, then w,,=3.53. This means that, even
though the values of w, change by only about 1%, that w,, would be
changed by more than 15 %, whereas the corresponding values of w,, from
Eq. (21) would have a relative error of less than 1%.

4. COMPARISON WITH A TRIANGULAR PULSE

The shape of the exponential energy pulse can be approximated by a
triangular pulse of duration 7 with the maximum occurring at 7, where f

Table III.  Values of w,, When w, Approaches 1/2% and

Vi=V,=1/2
@Dy
@, By Eq. (6) By Eq. (21)
1.25015 229 1.90
1.25020 1.92 1.90
0.24975 1.78 1.90

0.24970 1.88 1.90
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Table IV. Values of w,, When w, Approaches 1/4* and

Vi=V,=1/2
Wy
W, By Eq. (6) By Eq. (21)
1.25015 1.50 1.50
1.25020 1.50 1.50
0.24975 1.50 1.50
0.24970 1.50 1.50

is a fraction between zero and one. The equation for calculation of thermal
diffusivity o, for a triangular-shaped pulse of duration 6 can be given
as [5]

2
OCI‘L (22)

CZII/Z_T

where the constants ¢, and ¢, of Eq. (22) vary with f. For example, when
B=0.15, ¢; =0.34844 and ¢, = 2.5106, but when B =0.28, ¢; =0.31550 and
¢, =2.2730, and when §=0.5, ¢, =0.27057 and ¢, = 1.9496.

Equation (21) was solved for various values of w;, and w,. Selected
values are plotted in Fig. 5. Since the relation between w,,, and w,, is nearly
linear up to values for w, of 0.24, a closed linear solution can be obtained,

0y =213w, + 1.365 (23)

Wy,
2
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Fig. 5. Relationship between w, and w,.
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Combining Eq. (23) with Egs. (8) and (9) yields

0.066L>

*= 04761, —1, @4)

Using the equation for an assumed triangular-shaped pulse in the high-
temperature thermal conductivity laboratory of UMIST, the following
formula is derived for f=0.55, t=6x10"*s:

Y 0.2613L2
T 1.882t,,—6x107*

(25)

If we let £, =0.557 in Eq. (24) and compare this with Eq. (25), the relation
among «, o,, and 7,,, can be obtained. The results between a/x, and ¢,, are
plotted in Fig. 6. It is shown that, under the same conditions, the values of
thermal diffusivity calculated by Eq. (24) are always higher then those
obtained using Eq.(25). The curve in Fig. 6 can be used to correct
the thermal diffusivity results calculated using the triangular-shape
approximation.

5. CONCLUSION

When @ — co and &, =0, the dimensionless temperature rise ¥, using
the Larson and Koyama equation [Eq.(6)] and that obtained in the
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present analysis [ Eq. (21)] both reduce to the equation given by Parker et
al. [1]. When o =90, the dimensionless temperature rise V, calculated by
the present equation [Eq. (21)] is equal to zero, but for the Larson and
Koyama equation [Eq.(6)], V; is not equal to zero, thus violating its
initial boundary condition. When w, approaches 1/n? the error in V,
calculated by Eq. (6) is much larger than that in ¥, of Eq. (21). The results
calculated by both equations are in good agreement where the dimen-
sionless pulse characterization time w, deviates from 1/7°. When an
exponential pulse is approximated by a triangular-shape pulse, the values
of thermal diffusivity are always lower than what they should be and can
easily be corrected according to Fig. 6.
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